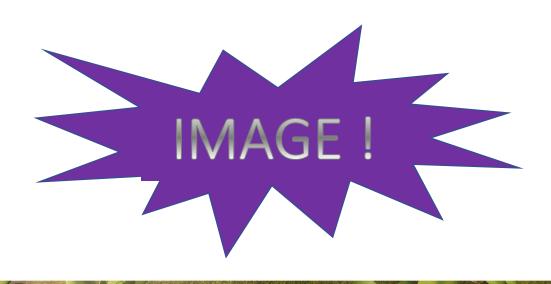


Printing Ink Technologies for Shrink Sleeves

Dr. M. Heylen Global R&D and Technical Director Narrow Web, FlintGroup

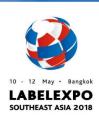
Agenda

- Introduction
- Different ink technologies
- Requirements for the inks for shrink sleeves
- Tips for water based and solvent based printing
- Deep dive into UV curable inks
- Summary



Role of packaging

protection - increase of shelf life


Brand Recognition

Eye Catching Packaging

Attractiveness of shrink sleeves

Ink technologies and printing processes

Print method	Ink type				
r mit method	Solvent	Water	Oil	UV	
Flexo	Х	Х	_	Х	
Letterpress	—	_	X	X	
Offset	_	_	Х	Х	
Screen	X	_	_	Х	
Gravure	Х	X	_	-	
"Digital"	X	X	X toner	X	

Raw materials

Ingredient	Solvent	Water-based	UV curing	Oil / Offset
Pigments	Yes	Yes	Yes	Yes
Resins	Nitrocellulose	Acrylic	Oligomers	Phenolic Alkyd
Diluents	Solvents	Water/amine	Monomers	Mineral / Vegetable Oil
Solvents	> 30%	< 5%	0	0
Additives	Wax Antifoam	Wax	Wax	Wax
	Silicones	Antifoam	Photo initiator Stabilizers	Stabilizers Fillers
	Plasticizers			

Pigments

Pigments

- physically & chemically stable
- non-soluble

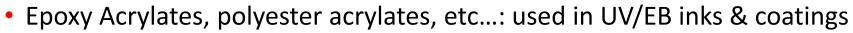
Denoted by Color Index Number (CI#)

• Red 57.1, Red 184, Red 177

• Cl# indicates properties

- hue, fastness, cost....
- important to know CI#!

• Organic nature


- Pyrazolene, Disazo, Naphthol, Pthalocyanine, Quinacridone
- Inorganic
 - Titanium Dioxide
 - Iron Oxides
 - Metallic

Resins

- Typical resins used
 - Nitrocellulose
 - Polyamide
 - Acrylic (styrene and acrylic acid)
 - Phenolic

- Urethanes, Polyesters: used in solvent based inks & coatings
- This is the backbone of the ink!
- Will affect adhesion, flexibility, resistance properties, speed of drying/curing, and overall end performance of printed material

Diluents

- Used to reduce viscosity, to "thin" the ink
- Most common is H₂O for waterbased inks
- UV inks use monomers
- Diluents will affect dry/cure speeds also

Additives

- Defoamers
- Waxes/Silicones (Coefficient Of Friction=COF)
- Matting agents
- Photoinitiators for UV inks
- Adhesion promoters
- Surfactants
- Optical Brighteners

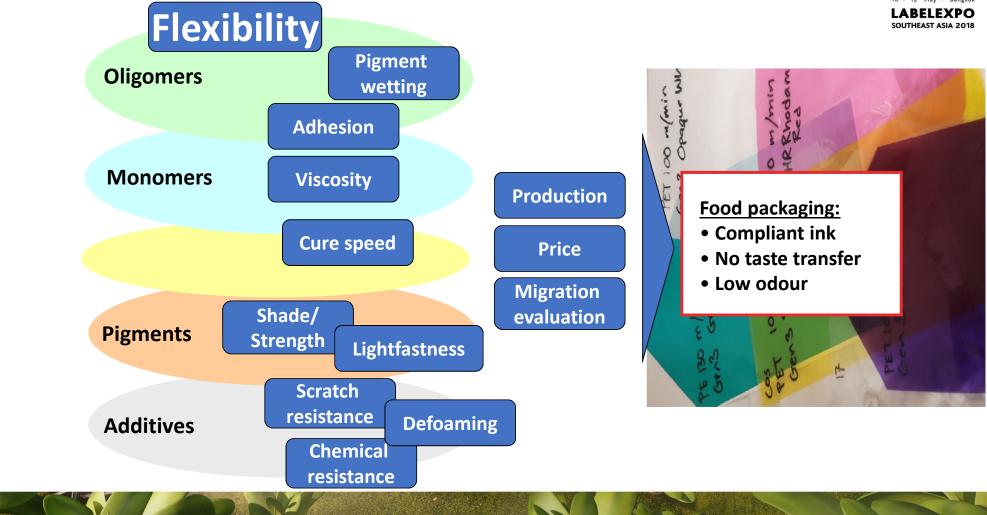
Requirements for inks for shrink sleeves

- Very high color strength
- High cure speed
- Excellent press & print performance
- Ability to shrink (so flexibility !)
- Adhesion to wide range of substrates (PET-G, PVC, OPS, PLA,....)
- Good surface slip properties, especially for ink on the last printing station (usually white)

Why is white ink so important?

- Usually last down so COF is very important
- Scratch resistance, adhesion and flexibility
- Opacity, adhesion and flexibility
- Low COF (high slip) last down
- High COF (low slip) first down
- Some people will print single bump of white and up to 3 bumps to get opacity and performance

Tips for printing water based inks


- Proper anilox roller selection and press speed
- High air velocity drying (not too much heat!) for proper drying in order to reach the desired physical properties (adhesion and scuff resistance) as well as to prevent blocking in the rewind
- Catalyze inks (whites/last down) if going thru steam tunnel and in case shrink sleeve is used in wet or cold storage conditions
- pH maintenance is critical!

Tips for printing solvent based inks

- Solvents particularly acetates damage film, so correct solvent selection is important
- If too much solvent remains in the film, over time, shrink performance can be affected, so the right viscosity in combination with proper drying (air temperature and velocity and "clean" air) – reduce levels of retained solvents
- OPS Film is particularly sensitive to solvent attack try dropping ethyl acetate onto OPS shrink film! Common problems – "whitening" & shrinking after print

Deep dive into UV inks: designing a Low Migration UV flexo

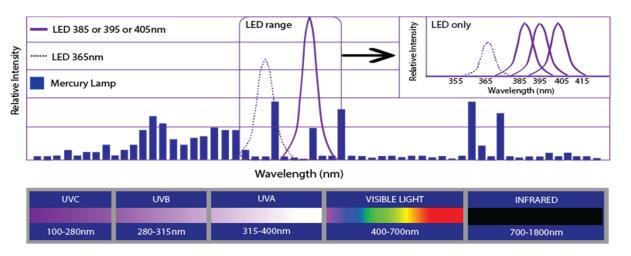
Designing Low Migration UV flexo inks

- Less building blocks available
- Excluding low molecular weight monomers prone to migrate
- Legislations and regulatory environment continuously moving
- Increased awareness among local brand owners

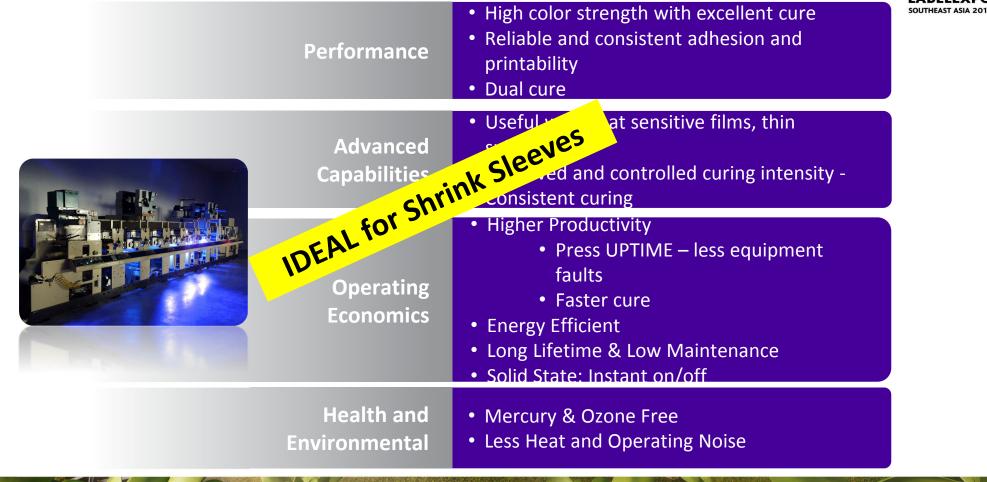
Targeting a design window that gets smaller every year

Design window – Standard UV inks

Challenges with UV curable inks


- If you don't have the proper ink formulated for "cool UV" systems, then your UV inks may not cure as fast......
- Often the chill roller is too cool
- All of these challenges can be addressed......with UV LED curing

What is UV LED?



- UV LED is an alternative for the tradictional UV Hg lamp systems (different wavelenght and intensity compared to conventional UV)
- Different ink chemistries are needed

Advantages of UV LED curing

10 - 12 May · Bangkok

Summary

- Inks are an important part of the shrink sleeves
- Requirements for the inks for shrink sleeves are quite stringent
- Not all inks will fit.....they must be specially designed and tested to achieve those performance requirements

