

Séamus Lafferty, Ph.D. President

Accraply A Barry-Wehmiller Packaging Company

Converting Shrink Sleeve Labels

Slitting, Seaming and Inspection

The Shrink Process

Converting Process

Slitting Methods

Shear

Crush/Score

Razor-In-Air

Images Courtesy of Tidland/Maxcess Intl.

Slitting Methods | Shear

Shear is the recommended method for slitting shrink film.

PVC Shrink Film Shear Slit @ 50x

PVC Shrink Film Razor Slit @ 50x

SlittingMethods | Shear

The concept of Shear Slitting uses two circular blades to cut a moving web at the point where the two blades contact each other.

Seaming Step

• Objective

- In order to
 - Maximize throughput (a function of speed and up-time on equipment)
 - Minimize waste (a function of 'ingredients', equipment and the training, knowledge and experience of people)

Seaming Step | Terminology

10 - 12 May •

LABELEXPO SOUTHEAST ASIA 2018

Bangkok

Seamer Concepts | Nip Rolls

Chemical Reaction Areas- Required for Solvent Weld

Seamer Concepts | Solvent Control

Refer to **page 57** of Label Academy book, *Shrink Sleeve Technology*

Gravity Fed

Pressure System

Servo Pump

Seamer Concepts | Solvent Delivery

Key elements in the seaming process.

Solvent Wheel

Top Wick

Refer to page 57

of Label Academy book, Shrink Sleeve Technology

Bottom Wick

Needle

Seamer Concepts | Rewind Oscillation

Refer to **page 59** of Label Academy book, *Shrink Sleeve Technology*

Finishing Step

Do I need to inspect after seaming?

- Past/Current Paradigm: Yes
 - Check Seam
 - Check Layflat
 - Repair Splices
 - Change Core Size
 - Check Print
- Present/Future: Debate
 - Non-stop, or partially non-stop, seaming capabilities open the door to eliminate the finishing step

Implementing Tamper evident, Security, and Brand protection features

Implementing Tamper evident, Security, and Brand protection features

Implementing Tamper evident, Security, and Brand protection features

How do we get the converted sleeves on the containers?

Sleeve Application Systems

Application Systems | Carousel/Rotary

Application Systems | Direct Apply

Application Systems | Vertical/Mandrel

How do we shrink the sleeves?

Heat Tunnels

Three ways that heat transfers; convection, radiation and conduction 10 - 12 May LABELEXPO Hot air re-circulating tunnels (Convection) SOUTHEAST ASIA 2018 **→**' Infra-red radiant heat tunnels (Radiation) \$ \$ Steam tunnels (Conduction) SHRINK TUNNEL

Shrink Tunnels | Hot Air

Convection: Hot air re-circulating tunnels

Advantages	Disadvantages
Good temperature control	High ambient heat
Heat zones possible	High velocity air
Directable heat	Heat shadows possible

Shrink Tunnels | Radiant

Radiant: Infra-red heat tunnels

Advantages	Disadvantages
Good temperature control	High ambient temperature, particularly in the upper part of the tunnel
Heat zones possible	Difficult to direct heat
Good heat transfer properties – excellent for pre-heating	Heat resistant conveyors required

Shrink Tunnels | Steam

Conduction: Steam tunnels

Advantages	Disadvantages
Excellent heat transfer properties	Extraction required
Uniform shrinking onto contoured containers	Steam required!
Product subjected to lower temperatures	

There is no one-size-fits-all solution

Ensuring the Best Results

Real world examples of quality considerations, faults and troubleshooting

Container Selection and Shape

Container Shape...

Container Shape...

Container Shape...

Container Shape...

Container Material...

Container Material / Handling...

The Importance of Film Selection

Film Material...

Film Material...

The Importance of Graphics

Pre-press...

Pre-press...

Pre-press...

The Importance of Ink Selection

Issues of Ink/Printing...

Slitting and Seaming

Slitting...

Sleeve Application and Shrinking

-

For Discussion...

For Discussion...

For Discussion...

